A Modification of Particle Swarm Optimization using Random Walk

نویسندگان

  • Rajesh Misra
  • Kumar S. Ray
چکیده

Particle swarm optimization comes under lot of changes after James Kennedy and Russell Eberhart first proposes the idea in 1995. The changes has been done mainly on Inertia parameters in velocity updating equation so that the convergence rate will be higher. We are proposing a novel approach where particle’s movement will not be depend on its velocity rather it will be decided by constrained biased random walk of particles. In random walk every particles movement based on two significant parameters, one is random process like toss of a coin and other is how much displacement a particle should have. In our approach we exploit this idea by performing a biased random operation and based on the outcome of that random operation, PSO particles choose the direction of the path and move non-uniformly into the solution space. This constrained, non-uniform movement helps the random walking particle to converge quicker then classical PSO. In our constrained biased random walking approach, we no longer needed velocity term (Vi), rather we introduce a new parameter (K) which is a probabilistic function. No global best particle (PGbest), local best particle (PLbest), Constriction parameter (W) are required rather we use a new term called Ptarg which is loosely influenced by PGbest. We test our algorithm on five different benchmark functions, and also compare its performance with classical PSO and Quantum Particle Swarm Optimization (QPSO). This new approach have been shown significantly better than basic PSO and sometime outperform QPSO in terms of convergence, search space, number of iterations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of orthogonal array technique and particle swarm optimization approach in surface roughness modification when face milling AISI1045 steel parts

Face milling is an important and common machining operation because of its versatility and capability to produce various surfaces. Face milling is a machining process of removing material by the relative motion between a work piece and rotating cutter with multiple cutting edges. It is an interrupted cutting operation in which the teeth of the milling cutter enter and exit the work piece during...

متن کامل

Pareto design of fuzzy tracking control based on the particle swarm optimization algorithm for a walking robot in the lateral plane on slope

Many researchers have controlled and analyzed biped robots that walk in the sagittal plane. Nevertheless, walking robots require the capability to walk merely laterally, when they are faced with the obstacles such as a wall. In walking robot field, both nonlinearity of the dynamic equations and also having a tracking system cause an effective control has to be utilized to address these problems...

متن کامل

Gait Optimization on a Humanoid Robot using Particle Swarm Optimization

This paper describes the application of Particle Swarm Optimization (PSO) for gait optimization on a humanoid robot. The biped gait is modeled by a number of parameterizable trajectories. To achieve omni-directional walking, different sets of gait parameters are optimized for specific walk directions and interpolated later. By using a fitness test based on an acceleration walk, the optimized se...

متن کامل

Cryptanalysis of Vigenere Cipher using Particle Swarm Optimization with Markov chain random walk

Vigenere cipher is a polyalphabetic substitution cipher with a very large key space. In this paper we have investigated the use of PSO for the cryptanalysis of vigenere cipher and proposed PSO with Markov chain random walk in which some of the worst particles are replaced with new better random particles to enhance the efficiency of PSO algorithm. Based on our experimental results, it is shown ...

متن کامل

INVERSE FREQUENCY RESPONSE ANALYSIS FOR PIPELINES LEAK DETECTION USING THE PARTICLE SWARM OPTIMIZATION

Inverse Transient Analysis (ITA) is a powerful approach for leak detection of pipelines. When the pipe transient flow is analyzed in frequency domain the ITA is called Inverse Frequency Response Analysis (IFRA). To implement an IFRA for leak detection, a transient state is initiated in the pipe by fast closure of the downstream end valve. Then, the pressure time history at the valve location is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1711.10401  شماره 

صفحات  -

تاریخ انتشار 2017